Tetrahedron Letters, Vol.31, No.41, pp 5943-5946, 1990 Printed in Great Britain

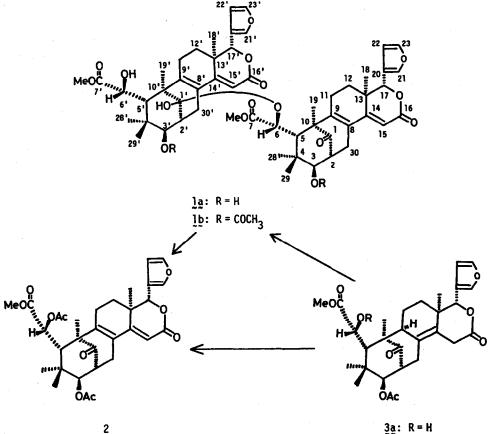
MAHAGONIN, A NOVEL DIMERIC TETRANORTRITERPENOID FROM SWIETENIA MAHAGONI JACQ.

Shigetoshi Kadota,^a Kyoko Yanagawa,^a Tohru Kikuchi,^{a,*} and Ken Tanaka^b

Research Institute for Wakan-Yaku (Oriental Medicines), Toyama Medical and Pharmaceutical University,^a 2630 Sugitani, Toyama 930-01, Japan and National Research Institute of Police Science,^b 6 Sanban-cho, Chiyoda-ku, Tokyo 102, Japan

Summary: Mahagonin, a novel dimeric tetranortriterpenoid, has been isolated from the seeds of <u>Swietenia mahagoni</u> and its structure was determined to be <u>1a</u> on the basis of spectroscopic evidence and chemical correlation with 3-0-acetylswietenolide (<u>3a</u>).

In previous papers,¹⁾ we reported the isolation and structure determination of eighteen new tetranortriterpenoids together with ten known compounds from the seeds of <u>Swietenia mahagoni</u> JACQ. Among these, several new compounds were found to have an antagonistic effect on platelet-activating factor (PAF).^{1,2)} In a continuing investigation of an oily fraction from the ether extract, we have isolated a novel dimeric tetranortriterpenoid, named mahagonin (<u>18</u>). This paper deals with the structure elucidation of 1a.


Mahagonin (1a), colorless needles, mp 178-180°C, $[\alpha]_D$ +170.5° (MeOH), showed UV absorptions (EtOH) at 212 and 292 nm (log ε : 4.16 and 4.37) and IR absorptions (KBr) at 3450 (OH), 1720 (unsaturated lactone), 1620 (double bond), and 870 cm⁻¹ (furan). The FAB-MS of 1a exhibited the (M+H)⁺ peak at m/z 969 and the molecular formula was determined to be C₅₄H₆₄O₁₆ [(M+H)⁺ 969.4232, Calcd 969.4273] by high-resolution FAB-MS.

The ¹H- and ¹³C-NMR spectra of ¹a, analyzed with the aid of ¹H-¹H and ¹H-¹³C COSY³), indicated the presence of a ketone ($\delta_{\rm C}$ 214.16), two methyl esters ($\delta_{\rm H}$ 3.74 and 3.79; $\delta_{\rm C}$ 52.02, 52.67, 173.11, and 175.94), two α,β -unsaturated lactones ($\delta_{\rm H}$ 5.09, 5.10, 5.88, and 5.91; $\delta_{\rm C}$ 80.64, 80.72, 109.34, 110.33, 165.96, and 166.62), two furans ($\delta_{\rm H}$ 6.45, 7.43, 7.44 and 7.49; $\delta_{\rm C}$ 109.98, 110.04, 119.96, 120.06, 141.19, 141.22, 142.97, and 143.06), two tetrasubstituted olefins ($\delta_{\rm C}$ 126.91, 127.17, 147.19, and 151.04), and four oxygenated methines ($\delta_{\rm H}$ 4.30, 4.34, 4.37, and 4.89; $\delta_{\rm C}$ 70.23, 73.95, 76.24, and 76.50) together with eight <u>tert</u>-methyl groups and six quaternary sp³ carbons (Table I). Furthermore, the ¹³C-NMR spectrum showed a characteristic signals at $\delta_{\rm C}$ 105.35 due to a quaternary carbon, which may be assigned to a ketal carbon. These NMR data suggested that 1a may be a dimeric tetranortriterpenoid.

In the ¹H-¹³C long-range COSY³) of <u>1a</u>, the ¹³C-signals at δ 165.96 (s, C-16) and at δ 158.60 (s, C-14) showed long-range correlations with

the ¹H-signals at δ 5.88 (15-H) and at δ 1.04 (18-H₃) and 1.45 (12-H), respectively, while the 13 C-signals at δ 127.17 (s, C-8) and δ 151.04 (s, C-9) were correlated with the ¹H-signals at δ 3.32 (30-H) and 5.88 (15-H) and at δ 1.25 (19-H₃) and 1.58 (12-H), respectively. Similarly, the 13 Csignals at δ 166.62 (s, C-16'), at δ 157.71 (s, C-14'), at δ 126.91 (s, C-8'), and at δ 147.19 (s, C-9') showed long-range correlations with the ¹H-signals at δ 5.91 (15'-H), at δ 0.99 (18'-H₃) and 1.55 (12'-H), at δ 2.77 (30'-H) and 5.91 (15'-H), and at δ 1.31 (19'-H₃) and 1.39 (12'-H), respectively. Thus, the tetrasubstituted double bonds must be conjugated with the α , β -unsaturated lactones. Some other significant long-range correlations observed are shown by arrows in Fig. 1.

Acetylation of mahagonin (1a)(10 mg) gave 3,3'-0,0-diacetylmahagonin (1b)(8.1 mg), mp 148-150°C, [α]_D +91.5° (CHCl₃), FAB-MS m/z: 1053 (M+H)⁺, and small amount of monomeric compound diacetate (2)(1.3 a mg),

3b: R = COCH3

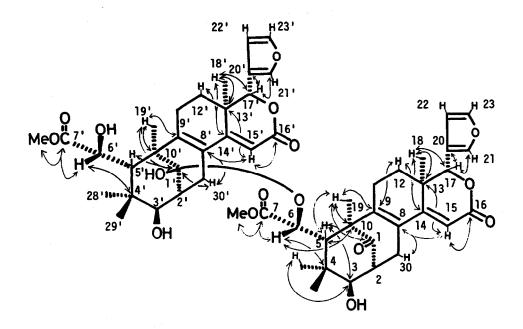


Fig. 1. Significant Long-range Correlations Observed in the $^{1}\mathrm{H}\mathrm{-}^{13}\mathrm{C}$ Long-range COSY Spectrum

 $C_{31}H_{36}O_{10}[M^+$ (EI-MS) 568.2289, Calcd 568.2307], mp 140-142°C, $[\alpha]_D$ +85.2° (CHCl₃). The latter showed UV absorptions at 213 and 282 nm (log ε : 3.84 and 4.11) and ¹³C- and ¹H-NMR signals due to a ketone (δ_C 210.76) and two acetyl groups (Table I). Eventually, this compound (2) was identified with the dehydrogenation product (2), mp 137-138°C, $[\alpha]_D$ +86.8° (CHCl₃), MS m/z: 568 (M⁺, C₃₁H₃₆O₁₀), derived from 3.6-0.0-diacetylswietenolide (3D)¹) by treatment with N-bromosuccinimide in boiling carbon tetrachloride under UV irradiation.⁴)

Similarly, reaction of 3-0-acetylswietenolide (3a)(60 mg) with Nbromosuccinimide under UV irradiation gave a dimer (1b)(9.8 mg), mp 146-147°C, $[\alpha]_D$ +90.5° (CHCl₃), which was found to be identical with 3,3'-0,0diacetylmahagonin (1b) by ¹H- and ¹³C-NMR comparisons.

From the foregoing evidence, the structure of mahagonin was established to be <u>1a</u> except for the stereochemistry at the C-1' position. Our present result provided the first example of a dimeric tetranortriterpenoid,⁵) which is unique in the structural feature having an hemiketal linkage between the 6-hydroxy group and 1'-ketone group. The anti-PAF activity of this compound is currently under investigation.

Position	ļa												2					
	6 H			8 C		Position	6 H			8 C		Position	8 H			8 C		
1				214.16	5	11				105.35	\$	1 1				210.76	5	
2	3.04	t (6.5)		50.38	d	2'	2,80	t	(7.0)	45.23	đ	2	3.18	t	(6.5)	47.10	đ	
3	4.34	d (6.5)		76.24	đ	3'	4.30	d	(7.0)	73.95	đ	3	5.44	d ((6.5)	77.26	đ	
4				39.74	s	41				39.63	5	4				38,60	S	
5	2.73	s		56.58	d	51	2.48	đ	(4.0)	60.68	d	5	2.95	5		55.29	d	
6	4.37	5		70.23	đ	6'	4.89	đ	(4.0)	76.50	d	6	5.49	5		69.96		
7				175.94	s	7'				173.11	s	7	—		•	170.84	5	
8				127.17	ŝ	8'				126.91	\$	8	—			126.94	\$	
9				151.04	ŝ,	9'	·			147.19	5	9	—			150.54	s	
10				51.27	5	10'				50.15	5	10				51.00	5	
n	2.34	•		22.25	t	יוו	2.15	iA M		23.84	t	11	2.36	•		22.34		
12	1.45			29.64	t	12'	1.39	11 11		29.31	t	12	1.46 1.63	ddd ddd	(12, 5, 2)	29.78	t	
13	—			36.91	5	13'				36.73	s	13		2		36.78		
14				158.60	5	141				157.71	s	14				157.12	5	
15	5.88	5		110.33	đ	15'	5.91	\$		109.34	d	15	5.86	5		110.88	d	
16				165.96		16'				166.62		16				165.36	5	
17	5.10 ^{a)}),		80.64) d	17'	5.09) s		80.72	c) d	17	5.10	5		80.72	d	
20				119.96) s	20,1				120.06	d) s	20				119.90		
21	7.49	m		141.19) d	21'	7.49	m		141.22	ej d	21	7.50	dd	(1.8, 1)	141.19	đ	
22	6.45			109.98) d	221	6.45	m		110.04	n a	22	6.45	dđ	(1.8, 1)	109.95	đ	
23	7.43 ^{b)}) _{t (1.8}	}	142.97) d	23'	7.44 ^t) t	(1.8)	143.06	g) d	23	7.45	t	(1.8)	143.20	d	
18	1.04			16.34	P	18'	0.99	\$		16.07	9	18	1.00	5		16.15	P	
19	1.25	5		18.52	q	19'	1.31	\$		18.93	9	19	1.20	5		18.33	q	
28	1.08	5		28.09	q	28'	1.00	s		29.78	q	28	1.02	5		27.97	q	
29	0.94	5		23.36	q	29'	1.13	\$		25.63	9	29	1.23	\$		26.62		
30	2.52		5,6.5,2) 5,2)	29.49	t	30'	2.41	n dd	(13.5,7)	23.65	t	30	2.58 3.03		(17.5, 6.5, 2) (17.5, 2)	29.78	t	
7-0 <u>CH</u>	3.79	s		52.67	9	7'-0 <u>CH</u>	3.74	\$		52.02	q	7-0 <u>CH</u> 3	3.74	\$		52.85	•	
							1					OCO <u>CH</u> 3	Z.12			20.47	P	
												0000	2.16	s		20.94	•	
	1						1					OCOCH3				169.18 169.73		

Table I. 1 H- and 13 C-NMR Data for Mahagonin (1a) and the Compound 2 (in CDC1₃)

Coupling constants (Hz) in parenthesis. The multiplicities of carbon signals were determined by means of the DEPT method, and are indicated as s, d, t, and q. a - g) Assignments may be interchanged.

References and Note

- S. Kadota, L. Marpaung, T. Kikúchi, and H. Ekimoto, <u>Chem. Pharm. Bull</u>., <u>38</u>, 639 (1990); <u>idem, ibid</u>., <u>38</u>, 894 (1990).
- E. J. Corey, C. -P. Chen, and M. J. Parry, <u>Tetrahedon Lett.</u>, <u>29</u>, 2899 (1988); D. Hosford, J. M. Mencia-Huerta, C. Page, and P. Braquet, <u>Phytotherapy Research</u>, <u>2</u>, 1 (1988).
- 3) A. Bax, "Two-Dimensional NMR in Liquids", D. Reidel Publishing Co., Dordrecht, Holland, 1982; R. Ben and H. Gunther, <u>Angew. Chem. Int. Ed.</u> <u>Engl.</u>, <u>22</u>, 350 (1983).
- D. A. H. Taylor and F. W. Wehrli, <u>J. Chem. Soc., Perkin Trans. I</u>, <u>1973</u>, 1602.
- Only one example of dimeric pentacyclic triterpene has been reported.
 See. V. U. Ahmad, N. Bano, and S. Bano, <u>J. Nat. Prod.</u>, <u>47</u>, 977 (1984).